


Инструкция по эксплуатации для электронного датчика давления

efectorsoo PM205x



706071 / 01



RU

# Содержание

| 1 Введение                                | 3   |
|-------------------------------------------|-----|
| 1.1 Используемые символы                  | 3   |
| 2 Инструкция по эксплуатации              | 3   |
| 3 Применение в соответствии с назначением |     |
| 4 Функция                                 | 5   |
| 4.1 Обработка измеренных сигналов         |     |
| 5 Установка                               | 6   |
| 6 Электрическое подключение               | 9   |
| 7 Эксплуатация                            | 9   |
| 7.1 Очистка крышки фильтра                |     |
| 8 Настройка параметров                    | 10  |
| 8.1 Регулируемые параметры                |     |
| 9 Типовые размеры                         | 12  |
| 10 Технические характеристики             | 13  |
| 10 1 Лиапазоны настройки                  | 1.1 |

## 1 Введение

### 1.1 Используемые символы

- Инструкция
- > Реакция, результат
- [...] Обозначение кнопок, переключателей и индикации
- → Ссылка на соответствующий раздел
- Примечание: несоблюдение инструкций может привести к неправильному функционированию или помехам.

## 2 Инструкция по эксплуатации

- Внимательно прочитайте инструкцию перед началом установки прибора. Убедитесь, что прибор предназначен для Вашей сферы применения без каких-либо ограничений.
- Несоблюдение данной инструкции по эксплуатации или пренебрежительное отношение к техническим данным может привести к травмам обслуживающего персонала и / или повреждению оборудования.
- Обязательно проверьте совместимость материалов датчика (см. главу (→ 10 Технические характеристики) с измеряемой средой.

Датчик должен подключаться только при помощи подходящего по своим характеристикам кабеля R/C (CYJV2).

# 3 Применение в соответствии с назначением

Датчик давления предназначен для измерения давления в системах контроля и управления технологическими процессами и оборудованием.

#### 3.1 Применение

Тип давления: относительное давление

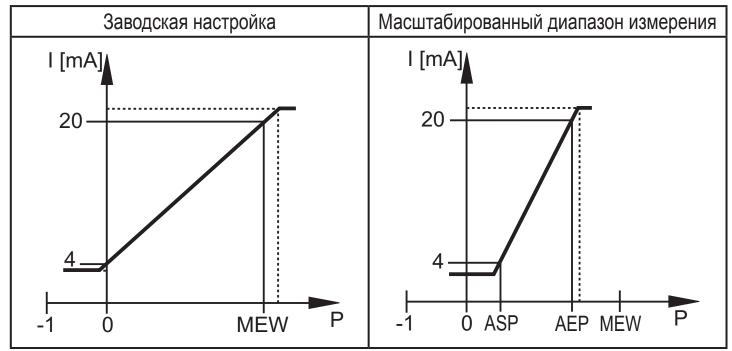
| Номер для<br>заказа | Диапазон измерения |           | Допустимое<br>избыточное<br>давление |       | Разрывное<br>давление |        |
|---------------------|--------------------|-----------|--------------------------------------|-------|-----------------------|--------|
|                     | bar                | PSI       | bar                                  | PSI   | bar                   | PSI    |
| PM2053              | -125               | -15363    | 100                                  | 1 450 | 350                   | 5 070  |
| PM2054              | -0,510             | -7145     | 50                                   | 725   | 150                   | 2 175  |
| PM2055              | -0,994,00          | -14,458,0 | 30                                   | 435   | 100                   | 1 450  |
| PM2056              | -0,132,50          | -1,836,3  | 20                                   | 290   | 50                    | 725    |
|                     | mbar               | PSI       | bar                                  | PSI   | bar                   | PSI    |
| PM2057              | -501 000           | -0,714,5  | 10                                   | 145   | 30                    | 450    |
|                     | mbar               | inH2O     | bar                                  | inH2O | bar                   | inH2O  |
| PM2058              | -12,5250           | -5,0100,4 | 10                                   | 4 000 | 30                    | 12 000 |

МПа =бар ÷ 10 / кПа= бар × 100



Примите соответствующие меры во избежание возникновения избыточного статического и динамического давления, превышающих давление перегрузки.

Не превышайте указанного разрывного давления. Прибор может быть разрушен даже при кратковременном превышении разрывного давления. ПРИМЕЧАНИЕ: Опасность поражения электрическим током!


## 4 Функция

#### 4.1 Обработка измеренных сигналов

Прибор преобразует давление в системе в аналоговый выходной сигнал (4...20 мА).

Диапазон измерения можно масштабировать до 25 % от верхнего предела измерения.

- При помощи настройки параметра ASP устанавливается значение, при котором выходной сигнал равняется 4 мА.
- При помощи настройки параметра АЕР устанавливается значение, при котором выходной сигнал равняется 20 мА.



P = давление в системе, MEW = предельное значение диапазона измерения

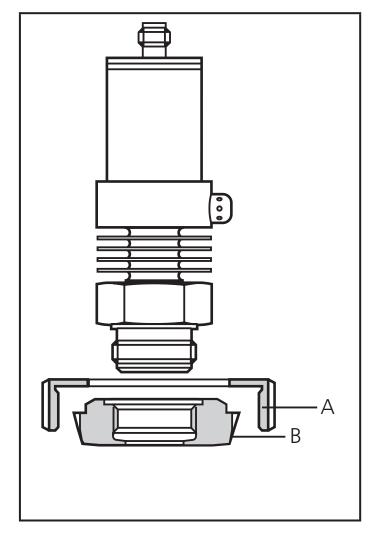
Выходной сигнал между 4 и 20 мА. Также отображается:

- Давление в системе выше диапазона измерения: выходной сигнал > 20 мА
- Давление в системе ниже диапазона измерения: выходной сигнал между 4 и 3.2 мА.

Прибор готов к эксплуатации. Заводская настройка: без масштабирования (ASP = 0 бар; AEP = 100% от конечной величины диапазона измерения).

#### 5 Установка

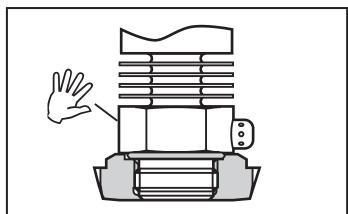
!


Перед началом работ по установке и снятию прибора убедитесь, что в системе отсутствует давление.

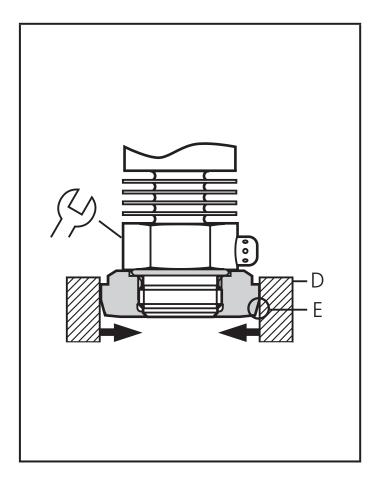
С помощью адаптеров Aseptoflex возможно подключение датчиков к разным резьбовым соединениям. (Адаптеры и переходники заказываются отдельно.)

### Принцип установки:


- Смонтируйте адаптер (В) к датчику.
- Закрепите датчик + адаптер с помощью накидной гайки, зажимного фланца или другого крепления (А) к резьбовому соединению.


Если элемент крепления (A) невозможно продеть через верх датчика, то наденьте его через низ датчика до начала установки адаптера.




#### Установка адаптера Aseptoflex

- ▶ Слегка смажьте резьбу, уплотнительные поверхности датчика и адаптер смазкой (1).
   Смазка должна быть одобрена для данного применения и совместима с используемыми эластомерами.
   Рекомендация: Используйте смазочную пасту UH1 84-201 с допуском USDA-H1 для пищевой промышленности.
- ▶ Убедитесь в том, что уплотнительное кольцо (С) установлено правильно.
- Вверните датчик в адаптер до упора. Будьте осторожны и не повредите уплотняющую поверхность.



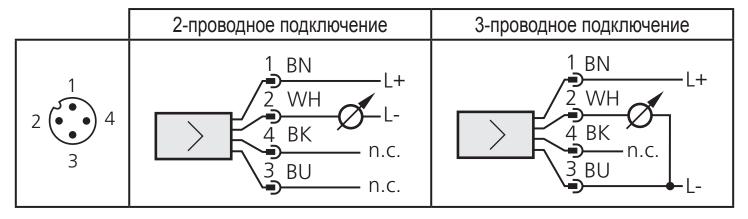


- ▶ Скрепите датчик и адаптер в зажимном устройстве (D). Слегка затяните зажимное устройство так, чтобы адаптер не деформировался. При этом уплотняющие поверхности (E) не должны быть повреждены.
- ▶ Затяните датчик при помощи гаечного ключа до упора (максимально допустимый момент затяжки равен 25 Nm / 18 ftlb). Примечание: Будьте осторожны, не перетяните! Перетягивание может оказать вредное воздействие на уплотнение.



ПРИМЕЧАНИЕ: Гарантия долгосрочной и стабильной герметичности гигиенического металлического уплотнителя (соединение Aseptoflex) обеспечивается только для однократной установки.

#### Вварной адаптер


Сначала вварите адаптер, затем установите датчик. Соблюдайте инструкции по установке датчика с адаптером.

### 6 Электрическое подключение

- !
- К работам по установке и вводу в эксплуатацию допускаются только квалифицированные специалисты электрики.

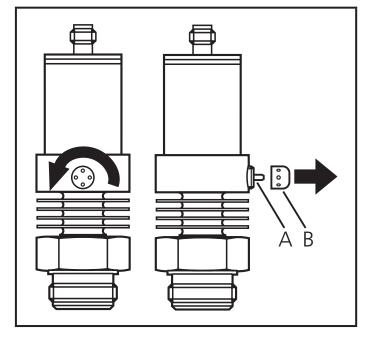
Придерживайтесь действующих государственных и международных норм и правил по монтажу электротехнического оборудования. Напряжение питания соответствует EN50178, SELV, PELV.

- ▶ Отключите электропитание.
- Подключайте прибор согласно данной схеме:



Цвета жил ifm:

1 = BN (коричневый), 2 = WH (белый), 3 = BU (синий), 4 = BK (черный)


## 7 Эксплуатация

После подачи напряжения питания прибор находится в Режиме измерения (= нормальный режим эксплуатации). Он выполняет измерения и обработку результатов измерений и выдаёт аналоговый сигнал, пропорциональный давлению в системе.

#### 7.1 Очистка крышки фильтра

Если на крышке фильтра датчика образуются вязкие отложения (которые приводят к ухудшению абсолютной точности измерений), то необходимо произвести ее очистку.

- Отверните крышку фильтра (В) (ипользуйте для этого плоскогубцы с изоляцией).
- ▶ Тщательно очистите крышку.

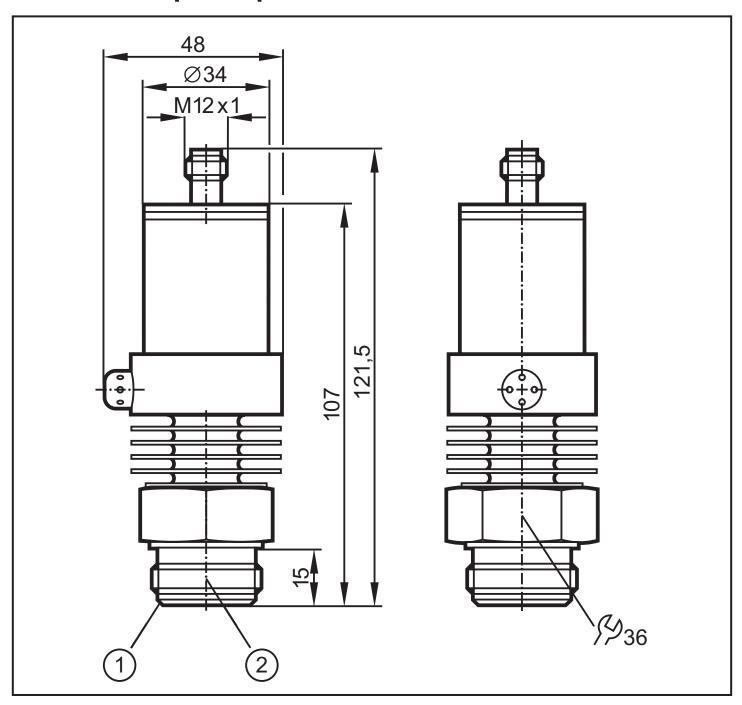


К работам по очистке воздушного клапана (А) допускается только квалифицированный персонал. Во время работы требуется особая осторожность.

Возможные остатки отложений (загрязнений) не должны уплотняться и вдавливаться в воздушный клапан. Они могут привести к засорению системы фильтрации и понизить точность измерения датчика.

Плотно заверните крышку фильтра в исходное положение.

Датчик хорошо защищён и приспособлен для эксплуатации в суровых условиях (степень защиты IP 67). С помощью специальных принадлежностей можно повысить степень защиты (номер заказа E30043).


## 8 Настройка параметров

- ▶ Соедините датчик с ПК при помощи интерфейса IO-Link (номер для заказа E30396).
- Установите параметры с помощью сервисной программы FDT программного обеспечения (ifm Контейнер). Программа является неотъемлемой частью интерфейса E30396.
  Библиотека программ доступных объектов DTM можно найти на www.ifm. com → Service → Download.

# 8.1 Регулируемые параметры

| ASP      | Аналоговая пусковая точка Измеренное значение, при котором генерируется ток 20 мА.                                                                                                                                                                                                                                                             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AEP      | Аналоговая конечная точка Измеренное значение, при котором выдается ток 4 мА. Минимальное расстояние между ASP и AEP = 25% верхнего предела измерения.                                                                                                                                                                                         |
| HI<br>LO | Память для максимального и минимального значений давления • HI: индикация максимального измеренного значения давления. • LO: индикация минимального измеренного значения давления.                                                                                                                                                             |
| COF      | Сдвиг калибровки Измеренное датчиком значение (рабочее значение датчика) смещается относительно реального значения. • Диапазон настройки: -5 +5% значение верхнего предела измерения (с масштабированием согласно заводской настройке (ASP = 0 бар и AEP = предельное значение диапазона измерения) с шагом в 0.1% верхнего предела измерения. |
| CAr      | Сброс калибровки<br>Сброс заданной калибровки СОF.                                                                                                                                                                                                                                                                                             |
| dAA      | Демпфирование для аналогового выхода Эта функция позволяет отфильтровать кратковременные или высокочастотные пики колебания давления. dAA-значение = времени реагирования между изменением давления и изменением статуса переключения в миллисекундах (мс). • Диапазон настройки: 0 (= функция dAA не активна) / 0.1 c / 0.5 c / 2 c           |
| Uni      | Дисплей Измеренные значения и значения параметров ASP / AEP могут отображаться в следующих единицах измерения: бар, миллибар, фунт/на кв.дюйм, МПа, кПа, дюймы вод.ст.(только PM2058), мм вод.ст. (только PM2658).                                                                                                                             |
| diS      | Настройка дисплея d1 / d2 / d3 = обновление измеренного значения каждые 50 мс/ 200 мс / 600 мс. Интервал обновления относится только к дисплею. ph = кратковременная индикация пикового значения давления (peak hold).                                                                                                                         |

# 9 Типовые размеры



Размеры в мм

1: Резьба Aseptoflex; 2: Уплотнительная кромка Aseptoflex

## 10 Технические характеристики

| Рабочее напряжение [В]                                         |                                             | 1430 DC      |  |  |
|----------------------------------------------------------------|---------------------------------------------|--------------|--|--|
| Рабочее напряжение для интерфейса EPS с датчиком [В] 15.530 DC |                                             |              |  |  |
| защита от переполюсовки / пе                                   | регрузок по току                            |              |  |  |
| Аналоговый выход                                               |                                             | 420 мА       |  |  |
| Макс. нагрузка [Ω]                                             | (U                                          | b - 13) x 50 |  |  |
| Миним. время срабатывания а                                    | аналогового выхода [мс]                     | 3            |  |  |
| Точность /погрешность (в % ве                                  |                                             |              |  |  |
| - Отклонение от характеристи                                   | ки (линейность, включая гистерезис и        |              |  |  |
|                                                                |                                             | < ± 0.6      |  |  |
|                                                                |                                             |              |  |  |
| - Гистерезис                                                   |                                             | < ± 0.1      |  |  |
|                                                                | ми температуры < 10K)                       |              |  |  |
|                                                                | ть (в % верхнего предела измерения за год ч |              |  |  |
| Температурные коэффициент                                      | ы (ТК) в компенсированном температурном,    | диапазоне    |  |  |
| 0 80°C ( в % верхнего преде                                    | ла измерения 10 K)                          |              |  |  |
|                                                                | PM2053PM2057                                | PM2058       |  |  |
| Максимальный ТК нулевой                                        | < ± 0.1                                     | < ± 0.1      |  |  |
| ТОЧКИ                                                          |                                             |              |  |  |
| Максимальный ТК                                                | < ± 0.2                                     | < ± 0.4      |  |  |
| диапазона измерения                                            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \       | 0.1          |  |  |
| Материалы корпуса в контакте                                   | е с изм. средой                             |              |  |  |
|                                                                | L / 1.4435; характеристики поверхности: Ra  | < 0.4 / Rz 4 |  |  |
| керамика (99.9 % Al2 O3); PTFE                                 |                                             |              |  |  |
| Материалы корпуса                                              | нерж. сталь 316L / 1.4404; PEI; FI          | РМ (Витон)   |  |  |
| Степень защиты                                                 |                                             | IP 67        |  |  |
|                                                                |                                             |              |  |  |
| Сопротивление изоляции [MΩ]> 100 (500 V DC)                    |                                             |              |  |  |
| Ударопрочность [g]50 (DIN / IEC 68-2-27, 11мс)                 |                                             |              |  |  |
| Виброустойчивость [g]20 (DIN / IEC 68-2-6, 10 - 2000 Гц)       |                                             |              |  |  |
| Мин. кол-во циклов                                             |                                             |              |  |  |
| Рабочая температура [°C] -2580                                 |                                             |              |  |  |
| Температура измеряемой среды [°С]                              |                                             |              |  |  |
| Температура хранения [°С]                                      |                                             | 40100        |  |  |
|                                                                |                                             | 4 1 0 -      |  |  |

<sup>1)</sup> все данные указаны в масштабе 1:1

<sup>&</sup>lt;sup>2)</sup> настройка порогового значения согласно DIN 16086

# 10.1 Диапазоны настройки

|        |                    | ASP   |       | AEP  |       | A D  |
|--------|--------------------|-------|-------|------|-------|------|
|        |                    | min   | max   | min  | max   | ΔΡ   |
| PM2053 | bar                | -1.0  | 18.8  | 5.3  | 25.0  | 0.1  |
|        | PSI                | -15   | 272   | 76   | 363   | 1    |
|        | MPa                | -0.10 | 1.88  | 0.53 | 2.50  | 0.01 |
| PM2054 | bar                | -0.50 | 7.49  | 2.00 | 9.99  | 0.01 |
|        | PSI                | -7    | 109   | 29   | 145   | 1    |
| 4      | kPa                | -50   | 749   | 200  | 999   | 1    |
| PM2055 | bar                | -0.99 | 1.00  | 0.26 | 4.00  | 0.01 |
|        | PSI                | -14,4 | 14.5  | 3.7  | 58.0  | 0.1  |
|        | kPa                | -99   | 100   | 26   | 400   | 1    |
| PM2056 | bar                | -0.13 | 1.88  | 0.50 | 2.50  | 0.01 |
|        | PSI                | -1.8  | 27.2  | 7.3  | 36.3  | 0.1  |
| 4      | kPa                | -13   | 188   | 50   | 250   | 1    |
| 57     | mbar               | -50   | 749   | 200  | 999   | 1    |
| PM2057 | PSI                | -0.7  | 10.9  | 2.9  | 14.5  | 0.1  |
| 4      | kPa                | -5.0  | 74.9  | 20.0 | 99.9  | 0.1  |
| PM2058 | mbar               | -12.5 | 100.0 | 50.0 | 250.0 | 0.5  |
|        | kPa                | -1.25 | 10.00 | 5.00 | 25.00 | 0.05 |
|        | inH <sub>2</sub> O | -5.0  | 40.2  | 20.2 | 100.4 | 0.2  |
|        | mmWS               | -125  | 1020  | 515  | 2550  | 5    |

ΔР = шаг приращения

Подробная информация на сайте: www.ifm.com