
$1 . . .280 \mathrm{~mm}$

- Reflection light scanner with fading
- V-optics allow for reliable detection of dark objects in the short range
- Scanning range adjustment via teach-in
- Visible red light
- Active suppression of extraneous light A2LS
- Fast alignment through brightVision ${ }^{\circledR}$
- Simple mounting with integrated M3 metal threaded sleeves
- Compact installation possible due to cable outlet at the rear or bottom
- Full control through green and yellow indicator LEDs
- Robust plastic housing acc. to IP 67 for industrial application

Dimensioned drawing

A Optical axis
B Indicator diodes
C Teach button

Electrical connection

2	
10-30V DC	$\mathrm{br} / \mathrm{BN}$
OUT	ws/WH
OND	b/BU
OUT 1	sw/BK

Specifications

Optical data

Scanning range limit 1)
Scanning range ${ }^{2)}$
Light source
Wavelength

Timing

Switching frequency

Response time
Delay before start-up

Electrical data

Operating voltage $U_{B}{ }^{3}$)
Residual ripple
Open-circuit current
Switching output

Signal voltage high/low

Output current

Indicators

Green LED
Yellow LED

Mechanical data

Housing
Optics cover
Weight

Connection type

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{5}$)
VDE safety class
Degree of protection
Light source
Standards applied
Certifications

1 ... 280 mm
see tables
LED (modulated light)
620 nm (visible red light)
500 Hz
1 ms
$\leq 300 \mathrm{~ms}$
$10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
$\leq 15 \%$ of U_{B}
$\leq 20 \mathrm{~mA}$
.../4P... 2 PNP transistor outputs
pin 2: PNP dark switching, pin 4: PNP light switching
.../2N... 2 NPN transistor outputs
pin 2: NPN dark switching, pin 4: NPN light switching
$\geq\left(\mathrm{U}_{\mathrm{B}}-2.5 \mathrm{~V}\right) / \leq 2.5 \mathrm{~V}$
max. $100 \mathrm{~mA}{ }^{4}$

ready

reflection (object detected)
plastic
plastic
20 g with M8 connector
40 g with 200 mm cable and M12 connector
70 g with 2 m cable
M8 connector, 4-pin
cable 200 mm with M12 connector, 4 -pin
cable $2 \mathrm{~m}, 4 \times 0.20 \mathrm{~mm}^{2}$
$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
2, 3
III
IP 67
exempt group (in acc. with EN 62471)
IEC 60947-5-2
UL 508, C22.2 No.14-13 3) 6)

1) Scanning range limit: typical scanning range
2) Scanning range: ensured scanning range
3) For UL applications: for use in class 2 circuits according to NEC only
4) Sum of the output currents for both outputs, 50 mA when ambient temperatures $>40^{\circ} \mathrm{C}$
5) $2=$ polarity reversal protection, $3=$ short circuit protection for all outputs
6) These proximity switches shall be used with UL Listed Cable assemblies rated 30V, 0.5 A min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

Fading: black/white error < 50\%
The black/white error is calculated from the scanning range against white and the reduction of the scanning range against black:

Black/white error =
Reduction of the scanning range against black
Scanning range against white

Example:

Setting: "teach on object" at 160 mm on white 90%

- Detection:

Black object, 6%, is detected at approx. 100 mm , the black/white error here is: $60 \mathrm{~mm} / 160 \mathrm{~mm}=$ approx. 38%
Setting:"teach on object" at 120 mm on black 6\%

- Situation in background:

White object, 90%, is no longer detected at distance $>200 \mathrm{~mm}$, the black/white error here is: $80 \mathrm{~mm} / 200 \mathrm{~mm}=40 \%$

Tables

Scanning range [mm]

Scanning range $[\mathrm{mm}]$Typ. scanning range limit $[\mathrm{mm}]$

Diagrams

A white 90%
B gray 50%
C gray 18%
D black 6\%

Remarks

Operate in accordance with intended use!
\Leftrightarrow This product is not a safety sensor and is not intended as personnel protection.
$\stackrel{4}{4}$ The product may only be put into operation by competent persons.
$\stackrel{n}{ }>$ Only use the product in accordance with the intended use.

- With the set scanning range, a tolerance of the scanning range limits is possible depending on the reflection properties of the material surface.

A Leuze electronic

FT 5
Reflection light scanner with fading

Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

		Designation	Part no.
With 4-pin M8 connector			50122572
	Pin 4: PNP light switching, pin 2: PNP dark switching	FT 5.3/4P-M8	50122575
	Pin 4: NPN light switching, pin 2: NPN dark switching	FT 5.3/2N-M8	
with 200mm cable and M12 connector			50122574
	Pin 4: PNP light switching, pin 2: PNP dark switching	FT 5.3/4P-200-M12	50122577
	Pin 4: NPN light switching, pin 2: NPN dark switching	FT 5.3/2N-200-M12	
With cable, cable length 2m			50122573
	Pin 4: PNP light switching, pin 2: PNP dark switching	FT 5.3/4P	50122576

Part number code

Operating principle	
FT	Reflection light scanner with fading
Series	
5	5 Series
Equipment	
. 3	Teach-in via teach button
Switching output/function /OUT10UT2 (OUT1 = Pin 4, OUT2 = Pin 2)	
4	PNP, light switching
P	PNP, dark switching
2	NPN, light switching
N	NPN, dark switching
X	Pin not used
Electrical connection	
-M8	M8 connector, 4-pin
N/A	Cable, standard length 2 m
-200-M8	200 mm cable with M8 connector
-200-M12	200 mm cable with M 12 connector

Teach-in method

A Leuze electronic

FT 5
Reflection light scanner with fading

Operation via teach button

Teach in operating level 1

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

Teach in operating level 2

- Press teach button until both LEDs flash alternatingly.
- Release teach button.
- Ready.

alternatingly
flashing at
3 Hz

Adjusting the switching behavior of the switching output - light/dark switching

This function permits inversion of the sensors' switching logic.

- Press the teach button until only the green LED flashes. The yellow LED then shows the inverted switching logic:
ON
$=$ switching outputs light switching (in the case of complementary sensors, Q1 (pin 4) light switching, Q2 (pin 2) dark switching), this means output active when object is detected.
OFF
= switching outputs dark switching (in the case of complementary sensors, Q1 (pin 4) dark switching, Q2 (pin 2) light switching), this means output inactive when object is detected.
- Release teach button.
- Ready.

