

Product Part Number
BOD 63M-LI06-S4

Safety Advisory

Laser Protection Regulations

The emitter corresponds to Laser Class 2 according to IEC 60825-1. This means that no additional precautions need to be taken for
operation. The device should be installed so that the laser warning label is easily visible.

These devices may not be used in applications where the safety of persons depends on device function.
C ϵ The CE Mark verifies that our products meet the requirements of the current EMC Directive.
Testing in our EMC Laboratory, which is accredited by DATech for Testing of Electromagnetic Compatibility, has shown that these Balluff products satisfy the EMC requirements of the following Generic Standards:
EN 61 000-6-4 (Emission) and
EN 61 000-6-2 (Noise Immunity)

Application

Only for NFPA 79 applications (machines with a supply voltage of maximum 600 volts). Device shall be connected only by using any R/C (CYJV2) cord, having suitable ratings.

Principle of operation

The BOD 63M measures distances which are output over the IO-Link interface. The sensor also has one adjustable switching output.
The BOD 63M works according to the principle of time of flight. A light pulse is sent out, reflected from the object and received again. The time of flight of this light pulse is measured and converted into a digital distance signal.

Display and operating elements

1) Stability indicator (red)
2) Output function indicator OUT 2 (yellow)
3) Output function indicator OUT 1 (yellow)
4) Power on indicator (green)
5) SET-button for switching distance 1 (OUT1)
6) SET-button for switching distance 2 (OUT2)

Fig. 1: Display and operating elements
The green LED indicates the ready state of the sensor. The yellow LED "OUT 1 " indicates the „active" state of switching output 1.
The yellow LED "OUT 2" indicates the „active" state of switching output 2.
The red LED indicates that the intensity of the signal for reliable operation is not sufficient.
The SET buttons are used to set the switching distances of the sensor independently of each other.

Installation

1) Optical axis of emitter
2) Optical axis of receiver
3) Display and control panel
4) rotatable by 270°

Fig. 5: Dimensions
Connections

Fig. 2: Wiring diagram, connector pins

1. Install and align the sensor.
2. Open the menu: Hold down both buttons simultaneously for 3 s . The green LED flashes.
3. Position the object in the beam path.
4. Store the current object position: Press SET "Out 1" for 2 s . During this time the output function indicator OUT1 flashes.
Note! This switching output is immediately active!
5. Optional: To store the second object position, reposition the object.
6. Saving the current object position: Press SET "Out 2" for 2 s . During this time the output function indicator OUT2 flashes.
Note! This switching output is immediately active!
7. To exit the menu: Hold down both buttons simultaneously for 3 s . The sensor is ready. The sensor will also exit teach-in mode automatically after 2 min . without pressing any buttons.

Digital signal

A digital signal is output depending on the position of the object.

$a=\max$. non-linearity
$b=$ Measuring range
Fig. 3: IO-Link data (hexadecimal)

Process data

Output data

The sensor sends 3 bytes to the Master.

Byte 0						Byte 1				Byte 2				
7	65	4	3	2	10	76	54	31	10	76	65	54	32	10
		-	\pm .0 0 0 0 0 0 0 0 0	¢			MS		istanc	e	value	LSB		

Distance value Distance in mm from the active surface of the sensor to the target
Switchpoints "1" Switching distance not reached
1... 4
"0" Switching distance exceeded
Fehler "1" Receiving power too low, the distance value is not reliable. Distance value FFFF
"0" Distance value is reliable.

Input data

The sensor receives 1 byte from the Master.

Laser ON	"1"	Laser turned on
	"0"	Laser turned off

Parameter data

The sensor parameters are configured over the SPDU channel. The following addresses can be read:

Index (Hex)	Description	Data width	Content
0010	Manufacturername	7 bytes	Balluff
0011	Manufacturer text	15 bytes	www.balluff.de
0012	Product name	15 bytes	BOD 63M- LI06-S4

The following addresses can be parameterized:

Index (Hex)	Description	Data width	Value range	Default values
0040	Switchpoint 1	2 bytes	$200-6000$	EEPROM
0041	Switchpoint 2	2 bytes	$200-6000$	EEPROM
0042	Switchpoint 3	2 bytes	$200-6000$	3000
0043	Switchpoint 4	2 bytes	$200-6000$	3000

Fig．6：Measuring range as a function of object reflection

Measuring accuracy

The sensor does not attain its full accuracy until operating temperature is reached，i．e．some time after power－on． The duration of this warm－up phase depends on ambient conditions．

Accessories	
Connecting	BKS－B 19－1／GS4－PU－．．．for operating cable：
	in IO－Link mode BKS－B 19－3．．．for operating in SIO mode
	For high－noise environments a shielded cable is recommended：
	BKS－S 19－14－PU－05 with RSC 4／7 connector
Mounting	BOD 63－HW－1
bracket：	

Technical data

Optical

Working distance	$200 . . .6000 \mathrm{~mm}$
Emitter light type	Laser red light，pulsed， can be turned off（only in IO－Link mode）
Laser Class acc．IEC 60825－1	2
Pulse power P_{p}	$<70 \mathrm{~mW}$
Average power P	$<1 \mathrm{~mW}$
Wavelength	660 nm
Pulse width t	7 ns
Pulse repetition frequency f	2 MHz
Light spot diameter at range 200 mm at range 6000 mm	10 mm
Resolution	10 mm
Gray value shift	$\leq 1 \mathrm{~mm}$
Repeat accuracy	$\leq 1.5 \%$
Temperature drift	$\leq \pm 4 \mathrm{~mm}$
Switching hysteresis	$\leq 1.5 \mathrm{~mm} / \mathrm{K}$
Utilization category	$\leq 15 \mathrm{~mm}$

Electrical

Supply voltage V_{s}	$18 \ldots . .30 \mathrm{~V} \mathrm{DC}$
No－load current lo max．	$\leq 90 \mathrm{~mA}$
Rated operating current	200 mA
Switching outputs	2, PNP／N．O．（only in SIO mode）
Error signal	Yes（only in IO－Link mode）
Button lock	Yes（only in IO－Link mode）
Voltage drop V ${ }_{\mathrm{d}}$ at l l	
Switchpoint settings	$\leq 2.5 \mathrm{~V}$
	Teach－In／IO－Link
IO－Link data	
Baud rate	38.4 kbaud
Linearity	$\leq \pm 1 \%$
Repeat accuracy	$\leq \pm 4 \mathrm{~mm}$
Temperature drift	$\leq 1.5 \mathrm{~mm} / \mathrm{K}$
Measuring range	$200 \ldots . .6000 \mathrm{~mm} \rightarrow$
Min．process data cycle	$\leq 16.5 \mathrm{~ms}$

Mechanical	
Connection type	Connector，M12x1 4－pin
Housing material	Al alloy
Lens material	Glass
Weight（incl．holder）	260 g
Contamination class	3

Time（SIO－mode）

Ready delay	$\leq 50 \mathrm{~ms}$
Switching frequency	$\geq 150 \mathrm{~Hz}$
On－delay	$\leq 3.4 \mathrm{~ms}$
Off－delay	$\leq 3.4 \mathrm{~ms}$

Indicators	
Power	Green LED
Output function	$2 \times$ yellow LED
Error	Red LED

Ambient

Degree of protection	IP 67
Protection class	II
Reverse polarity protected	Yes
Short circuit protected	Yes
Permissible ambient light	$\leq 10 \mathrm{kLux}$
Ambient temperature T_{a}	$-10 \ldots+60^{\circ} \mathrm{C}$

US 81112
for use in the secondary of a class 2 source of supply

Balluff GmbH Schurwaldstrasse 9
73765 Neuhausen a.d.F
Germany
Phone +49 7158 173-0
Fax +4971585010 balluff@balluff.de
www.balluff.com

